Selasa, 27 Desember 2011

UJI VITAMIN

UJI VITAMIN

Vitamin merupakan nutrisi tanpa kalori yang penting dan dibutuhkan untuk metabolisme tubuh manusia. Vitamin tidak dapat diproduksi oleh tubuh manusia, tetapi diperoleh dari makanan sehari-hari. Fungsi khusus vitamin adalah sebagai kofaktor (elemen pembantu) untuk reaksi enzimatik. Vitamin ditemukan di berbagai jenis makanan, buah-buahan, sayur-sayuran, sereal (biji-bijian), daging, ikan dan produk-produk susu.
Vitamin juga berperan dalam berbagai macam fungsi tubuh lainnya, termasuk regenerasi kulit, penglihatan, sistem susunan syaraf dan sistem kekebalan tubuh dan pembekuan darah. Tubuh membutuhkan jumlah yang berbeda untuk setiap vitamin. Setiap orang punya kebutuhan vitamin yang berbeda. Anak-anak, orang tua, orang yang menderita penyakit atau wanita hamil membutuhkan jumlah yang lebih tinggi akan beberapa vitamin dalam makanan mereka sehari-hari.

untuk modul percobaan selengkapnya, silahkan unduh disini ........

Physical chemistry experiment--Determination of activation energy and A reaction rate constant

Physical chemistry experiment
Determination of activation energy and A reaction rate constant

Experiment Purpose
  • ·         Determine the value of activation energy for Na2S2O3 (aq) with HCl (aq) reactions
  • ·         Determine the value of reactions rate constant (k) in various temperature
 Introduction
Commonly, rate for the reactions affected by increase of temperature. For the common reactions, the rate increase two until three times for the temperature increase at 10 degrees. This related with the average increase of kinetic energy of the reactan because the increase of temperature that decrease barrier energy of the reaction and the reaction more easier to react. 

For further information, please click here ........

Thank you for your attention.

PHYSICAL CHEMISTRY EXPERIMENT-ELEVATION OF BOILING POINT

PHYSICAL CHEMISTRY EXPERIMENT-ELEVATION OF BOILING POINT

Experiment purpose
Determine moleculer weight of the substance using elevation of boiling point methode
Introduction
If the solids are not easily dissolved in the solvent evaporates, the vapor pressure will eventually come down so that the boiling point of the solution will rise and its freezing point will drop compared to the pure solvent.
For further informations, please click here .......... 

Thank you for your attentions.

Rabu, 21 Desember 2011

PRAKTIKUM KIMIA ORGANIK

PRAKTIKUM KIMIA ORGANIK

Identifikasi Gugus Fungsi Aldehid dan Keton

Untuk selengkapnya, silahkan klik di sini ......


Identifikasi Gugus Fungsi Alkohol danFenol
Untuk selengkapnya, silahkan klik di sini ....

Identifikasi senyawa Hidrokarbon
Untuk selengkapnya, silahkan klik di sini .....

Minggu, 20 November 2011

Media pembelajaran berbasis komputer

Media Pembelajaran berbasis komputer

Media Pembelajaran Microsoft Power Point
Microsoft Power Point merupakan salah satu software yang dapat membantu kita dalam menyusun sebuah presentasi yang efektif, professional, dan juga mudah. Power Point akan membantu sebuah gagasan menjadi lebih menarik dan jelas tujuannya jika dipresentasikan karena membantu memudahkan dalam pembuatan slide, outline presentasi, presentasi elektronika, menampilkan slide yang dinamis, termasuk clip art yang menarik, yang semuanya itu mudah ditampilkan di layar monitor komputer.


Media pembelajaran menggunakan Macromedia Flash MX
Media pembelajaran menggunakan Visual Lab Chemistry


untuk tulisan lebih lengkap, silahkan unduh disini....klik...

Selasa, 18 Oktober 2011

Penentuan BM senyawa volatil berdasarkan massa jenis

PERCOBAAN I
Banyak senyawa-senyawa kimia dalam wujud cair yang memiliki sifat mudah menguap, terutama senyawa-senyawa organik, sehingga penentuan massa molekulnya dapat dilakukan berdasarkan pada massa jenis gas yang terjadi pada proses penguapannya. Secara matematika massa jenis zat dinyatakan dengan persamaan
                       
dengan ρ adalah massa jenis (g.mL-1); w adalah massa gas (g); dan V adalah volum gas. Dengan demikian, jika mengetahui berapa jumlah volum gas yang dihasilkan dalam proses penuapan sejumlah massa gas tersebut, maka massa jenisnya dapat diketahui.
Pada kondisi-kondisi tertentu, gas yang terjadi dapat dianggap bersifat ideal. Oleh karena itu, persamaan gas ideal dapat diterapkan terhadap gas tersebut.
                        PV = nRT
dengan P adalah tekanan gas (atm); V adalah volum gas (Liter); n adalah jumlah mol gas (mol); R adalah tetapan gas ideal (L.atm.K-1.mol-1); dan T adalah temperatur gas (Kelvin).
Sementara itu, jumlah mol gas dinyatakan dengan persamaan
Dengan Mr adalah massa molekul gas. Sehingga akan didapat persamaan,
 atau 
Jika syarat-syarat untuk gas ideal tidak terpenuhi, maka persamaan di atas tidak dapat digunakan untuk penentuan massa molekul tersebut.

..............


PERCOBAAN II
Metode percobaan menggunakan cara Dumas
Dalam percobaan ini sejumlah zat cair yang massanya diketahui dipanaskan dalam ruang tertentu (bola Dumas) pada temperatur dan tekanan tertentu. Volum gas yang terjadi diukur sesuai dengan volum bola Dumas dan massa gasnya dapat ditentukan.


untuk selengkapnya, klik disini ....
http://www.mediafire.com/?h86ezw917t36gct

How to Grow a Big Alum Crystal / Membuat kristal alum

How to Grow a Big Alum Crystal
Membuat kristal alum

Here's How:

  1. Pour 1/2 cup of hot tap water into a clean jar.
  2. Slowly stir in alum, a little at a time, until it stops dissolving. Don't add the whole amount - just enough to saturate the water.
  3. Loosely cover the jar with a coffee filter or paper towel (to keep dust out) and allow the jar to sit undisturbed overnight.
  4. The next day, pour the alum solution from the first jar into the clean jar. You will see small alum crystals at the bottom of the jar. These are 'seed' crystals that you will use to grow a big crystal.
  5. Tie nylon fishing line around the largest, best-shaped crystal. Tie the other end to a flat object (e.g., popsicle stick, ruler, pencil, butter knife). You will hang the seed crystal by this flat object into the jar far enough so that it will be covered in liquid, but won't touch the bottom or sides of the jar. It may take a few tries to get the length just right.
  6. When you have the right string length, hang the seed crystal in the jar with the alum solution. Cover it with the coffee filter and grow a crystal!
  7. Grow your crystal until you are satisfied with it. If you see crystals starting to grow on the sides or bottom of your jar, carefully remove your crystal, pour the liquid into the clean jar, and put the crystal in the new jar. Other crystals in the jar will compete with your crystal for alum, so it won't be able to get as big if you let these crystals grow.
1. Tuangkan 1 / 2 cangkir air keran air panas ke dalam botol bersih.
2. Perlahan aduk dalam tawas, sedikit pada suatu waktu, sampai berhenti melarutkan. Jangan menambahkan jumlah keseluruhan - hanya cukup untuk jenuh air.
3. Longgar penutup toples dengan filter kopi atau handuk kertas (untuk menjaga debu) dan memungkinkan tabung untuk duduk terganggu semalam.
4. Hari berikutnya, tuangkan larutan tawas dari toples pertama ke dalam botol bersih. Anda akan melihat kristal tawas kecil di bagian bawah tabung. Ini adalah 'bibit' kristal yang akan Anda gunakan untuk tumbuh kristal besar.
5. Dasi garis nilon memancing di sekitar kristal, terbesar berbentuk terbaik. Ikat ujung yang lain ke objek datar (misalnya, es loli tongkat, penggaris, pensil, pisau mentega). Anda akan menggantung kristal benih oleh objek ini datar ke dalam botol cukup jauh sehingga akan dibahas dalam cairan, tetapi tidak akan menyentuh bagian bawah atau sisi stoples. Ini mungkin mengambil beberapa mencoba untuk mendapatkan panjang tepat.
6. Bila Anda memiliki panjang string yang tepat, menggantung dalam stoples kristal benih dengan larutan tawas. Tutup dengan filter kopi dan tumbuh kristal!
7. Tumbuh kristal Anda sampai Anda puas dengan itu. Jika Anda melihat kristal mulai tumbuh di sisi atau bawah stoples Anda, hati-hati menghapus kristal Anda, tuangkan cairan ke dalam botol bersih, dan menempatkan kristal di jar baru. Kristal lain dalam toples akan bersaing dengan kristal Anda untuk tawas, sehingga tidak akan bisa mendapatkan seperti yang besar jika Anda membiarkan kristal tumbuh.

What You Need

  • 1/2 c hot tap water
  • 2-1/2 T alum
  • nylon fishing line
  • pencil, ruler, or knife
  • 2 clean jars
  • spoon
  • coffee filter/paper towel

Kamis, 15 September 2011

percobaan magnet

Pokok Bahasan
:
Magnet memiliki sifat-sifat tertentu
Sub Pokok Bahasan
:
Magnet memiliki gaya yang dapat menarik dan menembus benda-benda tertentu
Kelas / Sem.
:
V / 2
                                              
Materi Belajar
Magnet merupakan suatu benda yang dapat menarik besi, baja dan benda-benda yang mengandung besi dan baja. Setiap magnet memiliki dua ujung yang masing-masing ujungnya dinamakan kutub utara dan kutub selatan. Bagian magnet bergantung pada jaraknya terhadap kutub magnet, semakin dekat ke kutub magnet maka semakin kuat tarikannya. Daerah disekitar yang terkena pengaruh oeh magnet disebut medan magnet, besar kecilnya pengaruh magnet bergantung pada jarak magnet terhadap tempat itu. Hal ini dapat diketahui dengan meletakkan benda yang dapat ditarik magnet pada magnet tersebut. Salah satu sifat magnet adalah kutub-kutub yanng senama menghasikan reaksi tolak menolak dan apabila kutub berbeda maka magnet akan saling tarik menarik
Hal ini dapat diketahui dari kompas yang biasa digunakan untuk menunjukkan arah utara sampai selatan. Tidak semua benda di alam ini dapat dipengaruhi magnet. Besi atau baja dapat dijadikan magnet buatan dengan cara induksi, besi atau baja tersebut ditempelkan langsung pada salah satu kutub magnet atau dengan cara mendekatkan kedua benda tersebut ke salah satu kutub magnet tersebut. Elektromagnet dapat terjadi apabila bahan besi atau baja dililiti dengan kawat yang dialiri arus listrik, pada prinsipnya cara yang demikian ini disebabkan karena arus listrik yang dapat menimbulkan medan magnet.
untuk panduan lebih lengkap unduh disini...

PENDAHULUAN MATEMATIKA DALAM KIMIA FISIKA

PENDAHULUAN MATEMATIKA DALAM KIMIA FISIKA
Banyak permasalahan dalam kimia fisika mengarah pada studi tentang fungsi beberapa variabel. Bahkan masalah sederhana pemodelan gerak partikel dalam satu dimensi di bawah aksi dari medan gaya yang diberikan oleh potensial V= V (x, t) mengarah ke fungsi posisi, x, dan waktu, t. Untuk kasus sebuah partikel bergerak dalam ruang, potensi akan menjadi fungsi dari empat variabel: V = V (x, y, z, t). variabel ruang, (x, y, z), merupakan fungsi waktu, bahkan...
untuk detail, silahkan unduh disini...

Sabtu, 10 September 2011

Vapor Density - Victor Meyer experiment

VAPOR DENSITY
This experiment illustrates a practical method for determining the molecular weight of a volatile material. It provides excellent practice in the use of simple physical-chemical apparatus.
Theory.
The density of a vapor is more easily determined than the density of a gas because the substance may be weighed accurately when condensed to a liquid at room temperature. Very accurate vapordensity results have been obtained in this way.When only moderate accuracy is required, however, of the various methods available that of Victor Meyer is the simplest and the one most frequently used.
A known weight of liquid is vaporized in a chamber maintained at an appropriate and constant high temperature. The air displaced from the chamber is cooled to room temperature and its volume carefully measured. Substitution of air for the actual vapor thus provides a means of determining the volume the known weight of vapor would have occupied at room temperature if it could be cooled without condensation. It should be noted that it is not necessary that the temperature of the vaporization chamber be known, but it must be constant.
         For details experiments, please click here ....

Jumat, 09 September 2011

Chemical equilibrium experiment

Chemical equilibrium Experiment 
Percobaan Kesetimbangan kimia

Purpose
·         Understand the concept of equilibrium and the factors that influence it.
·         Calculate the equilibrium constant prices based on experiments
Tujuan
1. Memahami konsep kesetimbangan dan faktor –faktor yang memepengaruhinya.
          2. Menghitung harga konstanta kesetimbangan berdasarkan percobaan
Overview
              Chemical reactions are generally in a state of equilibrium. Reaction in equilibrium can be known from the macroscopic properties (such as color, concentration, etc.) that do not change (at constant temperature) after reaching equilibrium conditions, but symptoms did not change in the molecular two-way continuous. Macroscopic properties are most easily observed, to determine the system has peak at equilibrium conditions or not, is the change in color of the solution. For example, if we dissolve the I2 preformance then the water will initially yellow solution which formed the longer the color of the solution becomes darker and finally dark brown. The color of the solution will not change anymore while the process of molecular (crystal dissolution I2) persists but offset by re-crystal formation I2, therefore, after equilibrium is reached the number of crystals of I2 in solution is always fixed.

Pendahuluan
Reaksi kimia pada umumnya berada pada keadaan kesetimbangan. Reaksi pada keadaan setimbang dapat dikenal dari sifat makroskopik (seperti warna, konsentrasi, dll) yang tidak berubah (pada suhu tetap) setelah dicapai kondisi setimbang, tetapi gejala molekulernya tidak berubah dalam dua arah secara sinambung. Sifat makroskopis yang paling mudah diamati, untuk menentukan sistem telah mencapi kondisi setimbang atau tidak, adalah perubahan warna larutan. Sebagai contoh jika kita melarutkan I2  dalm air maka mula-mula akan terbentuk larutan warna kuning yang semakin lama warna larutan menjadi semakin gelap dan akhirnya coklat tua. Warna larutan tidak akan berubah lagi sementara proses molekulernya (melarutnya kristal I2) tetap berlangsung tetapi diimbangi dengan terbentuknya kembali kristal I2, oleh karena itu setelah kesetimbangan tercapai jumlah kristal I2 dalam larutan selalu tetap. 

For complete guideness, please download here......
Untuk modul percobaan selengkapnya, silahkan unduh disini.....

Rabu, 10 Agustus 2011

Chemical reactions experiments

CHEMICAL REACTION EXPERIMENTS

Experimental Purpose
Tujuan Percobaan
            Observe the chemical changes indicative of chemical reactions
            Mengamati perubahan kimia yang menandakan terjadinya reaksi kimia
Overview 
           A chemical reaction is a process that leads to the transformation of one set of chemical substances to another. Chemical reactions can be either spontaneous, requiring no input of energy, or non-spontaneous, typically following the input of some type of energy, viz. heat, light or electricity. Classically, chemical reactions encompass changes that strictly involve the motion of electrons in the forming and breaking of chemical bonds, although the general concept of a chemical reaction, in particular the notion of a chemical equation, is applicable to transformations of elementary particles, as well as nuclear reactions.
            Reaksi kimia adalah proses yang mengarah pada transformasi satu set zat kimia lain. Reaksi kimia dapat berupa spontan, tidak memerlukan masukan energi, atau non-spontan, biasanya mengikuti masukan dari beberapa jenis energi, yaitu. panas, cahaya atau listrik. Klasik, reaksi kimia meliputi perubahan yang ketat melibatkan gerakan elektron dalam membentuk dan melanggar ikatan kimia, meskipun konsep umum tentang reaksi kimia, khususnya gagasan tentang persamaan kimia, berlaku untuk transformasi partikel dasar, serta sebagai reaksi nuklir.

         
            For more detail, please download these file here .....  
         Untuk lebih detail, silahkan download file ini disini .....

Selasa, 02 Agustus 2011

Safety Guidence in Laboratory - Panduan Keamanan di laboratorium

Safety Guidence in Laboratory
Panduan Keamanan dan Keselamatan di laboratorium

These paper explain the safety guidence in laboratory, include the rule in laboratory.
Buku ini menjelaskan tentang keamanan dan keselamatan di laboratorium, termasuk tata tertib di laboratorium.

For further information, click here...
Untuk informasi yang lebih lengkap, silakan klik disini ...

Senin, 01 Agustus 2011

GALVANIC CELL EXPERIMENT - Percobaan Sel Galvani

GALVANIC CELL EXPERIMENT
Percobaan Sel Galvani



Here we investigate some of the properties of galvanic cells, cells used to produce an electric potential. Luigi Galvani discovered the first such cell by accident in 1791. Following Galvani's discovery, Alessandro Volta developed a practical cell in 1800, and it was Volta's cell that led to the work of Davy and Faraday.
Disini kita akan mencari tahu mengenai sel galvani, yaitu sel yang digunakan untuk memproduksi potensial listrik. Luigi Galvani menemukan sel pertama secara tidak sengaja pada tahun 1791. Mengikuti temuan Galvani, Alessando Volta mengembangkan sel sederhana pada tahun 1800 yang dinamakan sebagai sel volta yang juga mengilhami apa yang dikerjakan oleh Davy dan Faraday.

for more detail, click here.... 
Untuk info yang lebih jelas silahkan klik disini ...

MICROSOFT OFFICE 2007

MICROSOFT OFFICE 2007 GUIDE
PANDUAN MICROSOFT OFFICE 2007


Here, some guide to learn the Microsoft Office. these guide for beginner...click here for microsoft excel, click here for microsoft power point, and click here for microsoft word. GOOD LUCK...
kini hadir panduan belajar mengenai Microsoft Office. Panduan ini ditujukan bagi pemula, silahkan klik disini untuk microsoft excel, klik disini untuk microsoft power point, dan klik disini untuk microsoft word. selamat belajar...

Minggu, 31 Juli 2011

food chemistry / Kimia Pangan - Umami


FOOD CHEMISTRY
KIMIA PANGAN

Flavor Enhancement—Umami
Perasa Makanan - Umami 

A number of of compounds have the ability to enhance or improve the flavor of foods. It has often been suggested that these compounds do not have a particular taste of their own. Evidence now suggests that there is a basic taste response to amino acids, especially glutamic acid. This taste is sometimes described by the word umami, derived from the Japanese for deliciousness (Kawamura and Kare 1987). It is suggested that a primary taste has the following characteristics:
• The receptor site for a primary taste chemical is different from those of other primary tastes.
• The taste quality is different from others.
• The taste cannot be reproduced by a mixture of chemicals of different primary tastes.
From these criteria, we can deduce that the glutamic acid taste is a primary taste for the
following reasons:
• The receptor for glutamic acid is different from the receptors for sweet, sour, salty, and bitter.
• Glutamic acid does not affect the taste of the four primary tastes.
• The taste quality of glutamic acid is different from that of the four primary tastes.
·                     Umami cannot be reproduced by mixing any of the four primary tastes.


Monosodium glutamate has long been recognized as a flavor enhancer and is now being considered a primary taste, umami. The flavor potentiation capacity of monosodium
glutamate in foods is not the result of an intensifying effect of the four primary tastes. Glutamate may exist in the L and D forms and as a racemic mixture. The L form is the naturally occurring isomer that has a flavor-enhancing property. The D form is inert. Although glutamic acid was first isolated in 1866, the flavor-enhancing properties of the sodium salt were not discovered
until 1909 by the Japanese chemist Ikeda. Almost immediately,' commercial production of the compound started and total production for the year 1954 was estimated at 13,000,000 pounds. The product as first described by Ikeda was made by neutralizing a hydrolysate of the seaweed Laminaria japonica with soda. Monosodium glutamate is now produced from wheat gluten, beet
sugar waste, and soy protein and is used in the form of the pure crystallized compound.
It can also be used in the form of protein hydrolysates derived from proteins that contain
16 percent or more of glutamic acid. Wheat gluten, casein, and soy flour are good sources of glutamic acid and are used to produce protein hydrolysates. The glutamic acid content of some proteins is listed in Table 7-8 (Hall 1948). The protein is hydrolyzed with hydrochloric acid, and the neutralized hydrolysate is used in liquid form or as a dry powder. Soy sauce, which is similar to these hydrolysates, is produced wholly or partially by enzymic hydrolysis. This results in the
formation of ammonia from acid amides; soy sauce contains ammonium complexes of amino acids, including ammonium glutamate.
The flavor of glutamate is difficult to describe. It has sometimes been suggested that glutamate has a meaty or chickeny taste, but it is now generally agreed that glutamate flavor is unique and has no similarity to meat. Pure sodium glutamate is detectable in concentrations as low as 0.03 percent; at 0.05 percent the taste is very strong and does not increase at higher concentrations. The taste has been described (Crocker 1948) as a mixture of the four tastes. At about 2 threshold
values of glutamate concentration, it could be well matched by a solution containing 0.6
threshold of sweet, 0.7 of salty, 0.3 of sour, and 0.9 of bitter. In addition, glutamate is said to cause a tingling feeling and a marked persistency of taste sensation. This feeling is present in the whole of the mouth and provides a feeling of satisfaction or fullness. Apparently glutamate stimulates our tactile sense as well as our taste receptors. The presence of salt is required to produce the glutamate effect. Glutamate taste is most effective in the pH range of 6 to 8 and
decreases at lower pH values. Sugar content also affects glutamate taste. The taste in a
complex food, therefore, depends on a complex interaction of sweet, sour, and salty, as well as the added glutamate.

Monosodium glutamate improves the flavor of many food products and is therefore widely used in processed foods. Products benefiting from the addition of glutamate include meat and poultry, soups, vegetables, and seafood. For many years glutamate was the only known flavor enhancer, but recently a number of compounds that act similarly have been discovered. The 5'-nucleotides, especially 5'-inosinate and 5'-guanylate, have enhancement properties and also show a synergistic
effect in the presence of glutamate. This synergistic effect has been demonstrated by determining the threshold levels of the compounds alone and in mixtures. The data in Table 7-9 are quoted from Kuninaka (1966). The 5'-nucleotides were discovered many years ago in Japan as components of dried bonito (a kind of fish). However, they were not produced commercially and used as flavor enhancers until recently, when technical problems in their production were solved.
The general structure of the nucleotides with flavor activity is presented in Figure 7-21.
There are three types of inosinic acid, 2'-, 3'-,and 5'-isomers; only the 5'-isomer has flavor
activity. Both riboside and S'-phosphomonoester linkages are required for flavor activity,
which is also the case for the OH group at the 6-position of the ring. Replacing the OH group with other groups, such as an amino group, sharply reduces flavor activity but this is not true for the group at the 2-position. Hydrogen at the 2-position corresponds with inosinate and an amino group with guanylate; both have comparable flavor activity, and the effect of the two compounds is additive. The synergistic effect of umami substances is exceptional. The subjective taste intensity of a blend of monosodium glutamate and disodium 5'-inosinate was found to be 16 times stronger than that of the glutamate by itself at the same total concentration (Yamaguchi
1979).

Sabtu, 30 Juli 2011

INTRODUCTION TO TOXICOLOGY AND TOXICOLOGICAL CHEMISTRY

INTRODUCTION TO TOXICOLOGY AND
TOXICOLOGICAL CHEMISTRY
Ultimately, most pollutants and hazardous substances are of concern because of
their toxic effects. To understand toxicological chemistry, it is essential to have some
understanding of biochemistry, the science that deals with chemical processes and
materials in living systems. Biochemistry is summarized in Chapter 10.
Toxicology
A poison, or toxicant, is a substance that is harmful to living organisms because
of its detrimental effects on tissues, organs, or biological processes. Toxicology is
the science of poisons. Toxicants to which subjects are exposed in the environment
or occupationally may be in several different physical forms, such as vapors or dusts
that are inhaled, liquids that can be absorbed through the skin, or solids ingested
orally. A substance with which the toxicant may be associated (the solvent in which
it is dissolved or the solid medium in which it is dispersed) is called the matrix. The
matrix may have a strong effect upon the toxicity of the toxicant.
There are numerous variables related to the ways in which organisms are
exposed to toxic substances. One of the most crucial of these, dose, is discussed in
Section 23.2. Another important factor is the toxicant concentration, which may
range from the pure substance (100%) down to a very dilute solution of a highly
potent poison. Both the duration of exposure per incident and the frequency of
exposure are important. The rate of exposure and the total time period over which
the organism is exposed are both important situational variables. The exposure site
and route also affect toxicity.
It is possible to classify exposures on the basis of four general categories. Acute
local exposure occurs at a specific location over a time period of a few seconds to a
few hours and may affect the exposure site, particularly the skin, eyes, or mucous
membranes. The same parts of the body can be affected by chronic local exposure, for which the time span may be as long as several years. Acute systemic exposure is
a brief exposure or exposure to a single dose and occurs with toxicants that can enter
the body and affect organs that are remote from the entry site. Chronic systemic
exposure differs in that the exposure occurs over a prolonged time period.
In discussing exposure sites for toxicants it is useful to consider the major routes
and sites of exposure, distribution, and elimination of toxicants in the body, as
shown in Figure 23.1. The major routes of accidental or intentional exposure to
toxicants in humans and other animals are the skin (percutaneous route), the lungs
(inhalation, respiration, pulmonary route), and the mouth (oral route). The
pulmonary system is most likely to take in toxic gases or very fine, respirable solid
or liquid particles. In other than a respirable form, a solid usually enters the body
orally. Absorption through the skin is most likely for liquids, solutes in solution, and
semisolids, such as sludges.

The defensive barriers that a toxicant may encounter vary with the route of
exposure. An interesting historical example of the importance of the route of
exposure to toxicants is provided by cancer caused by contact of coal tar with skin.
The permeability of skin is inversely proportional to the thickness of the skin’s
stratum corneum layer, which varies by location on the body in the following
order: soles and palms > abdomen, back, legs, arms > genital (perineal) area.
Evidence of the susceptibility of the genital area to absorption of toxic substances is
to be found in accounts of the high incidence of cancer of the scrotum among
chimney sweeps in London described by Sir Percival Pott, Surgeon General of
Britain during the reign of King George III. The cancer-causing agent was coal tar condensed in chimneys. This material was more readily absorbed through the skin in
the genital areas than elsewhere, leading to a high incidence of scrotal cancer. (The
chimney sweeps’ conditions were aggravated by their lack of appreciation of basic
hygienic practices, such as bathing and regular changes of underclothing.)
Organisms can serve as indicators of various kinds of pollutants, thus serving as
biomonitors. For example, higher plants, fungi, lichens, and mosses can be
important biomonitors for heavy-metal pollutants in the environment.
Synergism, Potentiation, and Antagonism
The biological effects of two or more toxic substances can be different in kind
and degree from those of one of the substances alone. Chemical interaction between
substances may affect their toxicities. Both substances may act upon the same
physiologic function, or two substances may compete for binding to the same
receptor (molecule or other entity acted upon by a toxicant). When both substances
have the same physiologic function, their effects may be simply additive or they
may be synergistic (the total effect is greater than the sum of the effects of each
separately). Potentiation occurs when an inactive substance enhances the action of
an active one, and antagonism when an active substance decreases the effect of
another active one.
DOSE-RESPONSE RELATIONSHIPS
Toxicants have widely varying effects upon organisms. Quantitatively, these
variations include minimum levels at which the onset of an effect is observed, the
sensitivity of the organism to small increments of toxicant, and levels at which the
ultimate effect (particularly death) occurs in most exposed organisms. Some
essential substances, such as nutrient minerals, have optimum ranges above and
below which detrimental effects are observed (see Section 23.5 and Figure 23.4).
Factors such as those just outlined are taken into account by the dose-response
relationship, which is one of the key concepts of toxicology. Dose is the amount,
usually per unit body mass, of a toxicant to which an organism is exposed. Response
is the effect upon an organism resulting from exposure to a toxicant. To define a
dose-response relationship, it is necessary to specify a particular response, such as
death of the organism, as well as the conditions under which the response is
obtained, such as the length of time from administration of the dose. Consider a
specific response for a population of the same kinds of organisms. At relatively low
doses, none of the organisms exhibits the response (for example, all live), whereas at
higher doses all of the organisms exhibit the response (for example, all die). In
between, there is a range of doses over which some of the organisms respond in the
specified manner and others do not, thereby defining a dose-response curve. Doseresponse
relationships differ among different kinds and strains of organisms, types of
tissues, and populations of cells.
Figure 23.2 shows a generalized dose-response curve. The dose corresponding to
the mid-point (inflection point) of the resulting S-shaped curve is the statistical estimate
of the dose that would kill 50 % of the subjects. It is designated as LD50 and is
commonly used to express toxicities.
RELATIVE TOXICITIES
Table 23.1 illustrates standard toxicity ratings that are used to describe estimated
toxicities of various substances to humans. In terms of fatal doses to an adult
human of average size, a “taste” of a supertoxic substance (just a few drops or less)
is fatal. A teaspoonful of a very toxic substance could have the same effect.
However, as much as a quart of a slightly toxic substance might be required to kill
an adult human.
When there is a substantial difference between LD50 values of two different
substances, the one with the lower value is said to be the more potent. Such a
comparison must assume that the dose-response curves for the two substances being
compared have similar slopes.
Nonlethal Effects
So far, toxicities have been described primarily in terms of the ultimate effect—
death of organisms, or lethality. This is obviously an irreversible consequence of
exposure. In many, and perhaps most, cases, sublethal and reversible effects are of
greater importance. The margin of safety (Figure 23.3) is used in connection with
drugs to express the difference between the dose that gives a desired therapeutic
effect and a harmful, potentially lethal, effect. This term applies to other substances,
such as pesticides, for which it is desirable to have a large difference between the
dose that kills a target species and that which harms a desirable species.
23.4 REVERSIBILITY AND SENSITIVITY
Sublethal doses of most toxic substances are eventually eliminated from an
organism’s system. If there is no lasting effect from the exposure, it is said to be
reversible. In cases where the effect is permanent, it is termed irreversible.
Irreversible effects of exposure remain after the toxic substance is eliminated from the organism. Figure 23.3 illustrates these two kinds of effects. For various chemicals
and different subjects, toxic effects can range from the totally reversible to the
totally irreversible.



Hypersensitivity and Hyposensitivity
Some subjects are very sensitive to a particular poison, whereas others are very
resistant to the same substance. These two kinds of responses illustrate hypersensitivity
and hyposensitivity, respectively; subjects in the mid-range of the doseresponse
curve are termed normals. These variations in response tend to complicate
toxicology in that there is no specific dose guaranteed to yield a particular response,
even in a homogeneous population.
In some cases, hypersensitivity is an induced response to exposure to a
substance. After one or more doses of a chemical, a subject may develop an extreme
reaction to it. This occurs with penicillin, for example, in cases where people
develop such a severe allergic response to the antibiotic that exposure is fatal if
countermeasures are not taken.