Selasa, 31 Desember 2013

AUGMENTED LEARNING

AUGMENTED LEARNING

Augmented learning is an on-demand learning technique where the environment adapts to the learner. By providing remediation on-demand, learners can gain greater understanding of a topic and stimulate discovery and learning.
Technologies incorporating touchscreens, voices and interaction have demonstrated the educational potential that scholars, teachers and students are embracing. Instead of focusing onmemorization, the learner experiences an adaptive learning experience based upon the current context. The augmented content can be dynamically tailored to the learner's natural environment by displaying text, images, video or even playing audio (music or speech). This additional information is commonly shown in a pop-up window for computer-based environments.
Most implementations of augmented learning are forms of e-learning. In desktop computing environments, the learner receives supplemental, contextual information through an on-screen, pop-up window, toolbar or sidebar. As the user navigates a website, e-mail or document, the learner associates the supplemental information with the key text selected by a mouse or other input device. Augmented learning has also been deployed on mobile, touchscreen devices including tablets.
Augmented learning is closely related to augmented intelligence and intelligence amplification. Augmented intelligence applies information processing capabilities to extend the processing capabilities of the human mind through distributed cognition. Augmented intelligence provides extra support for autonomous intelligence and has a long history of success. Mechanical and electronic devices that function as augmented intelligence range from the abacus, calculator, personal computers and smart phones. Software with augmented intelligence provide supplemental information that is related to the context of the user. When an individual's name appears on the screen, a pop-up window could display person's organizational affiliation, contact information and most recent publications.
In mobile reality systems, the annotation may appear on the learner's individual "heads-up display" or through headphones for audio instruction.

What is augmented reality?
In its simplest form, augmented reality is the layering of information over a real-world environment. To get an idea of what this means, imagine watching a football game on television. The first down line, the advertisements that hover over the field, and those drawings the commentators make on replays are all forms of augmented reality.
One of the most visible entries into the AR scene is Google Glass. The device used for Google Glass looks just like a pair of eyeglasses. The lenses are actually tiny screens through which the wearer can see the world as usual, as well as superimposed data and images, thus completely changing their experience. The device responds to voice commands and offers numerous options, such as a browser, video recorder and sharing tools that allow the user to be connected in a meaningful way.
What augmented reality means for education
EmergingEdTech illustrated a few of the most anticipated ways Google Glass will likely be used in education. Text translations in real time could immerse students in a foreign language, research could be done on the go, and the ease of video and imaging could make presentations and reports much more dynamic. Students could even use Google Glass to bolster their portfolios by capturing first-hand demonstrations of their work.
Some mobile augmented reality apps allow users to simply scan an object with a smartphone or tablet to receive a host of information about it, delivered in everything from video streaming to slideshows to audio. Many use GPS technology and image recognition to offer insight on locations, maps and geographical features. Some work with textbooks to provide 3D images of the material presented on the page.
A joint chapter report from Harvard and Radford Universities on Augmented Reality Teaching and Learning[PDF] offers an excellent example of how devices like Google Glass can broaden the educational spectrum. Imagine a student approaching an oak tree. The device immediately offers video or slide show information on the habitat the tree is in and the animals that make a home there. If the tree has been earmarked as part of an educational initiative, the student could point their device at a placard near the tree, which would then prompt a 3-D digital view of the tree, including the inside structure. This hands-on virtual learning could provide students with a much deeper understanding of the subject, as well as better retention of the material.
But AR isn't just for helping students learn -- it can also be an excellent tool for teachers to learn about their students. The Augmented Lecture Feedback System, developed by scientists at Spain's Universidad Carlos III de Madrid, is a great example. The system allows teachers to look over their room of students and see icons above their heads, activated by the student's cell phones, which tell the teacher whether the students understand the lecture material being taught. This tool is helpful for teachers who want to adjust their instruction technique on the fly, and also allows them to pinpoint students who need help but might not be comfortable with speaking up in class.
The future of augmented reality
Augmented reality is expected to pack such a punch that the market for the innovative technology has already grown dramatically. A press release from MarketsandMarkets predicts that the virtual reality and AR market will be worth $1.06 billion by 2018. And that figure doesn't even include mobile-based augmented reality. Since mobile devices are on the cutting edge of the technology, the worth of the market could actually be much higher.
As the use of smartphones continues to grow and virtual education becomes the norm rather than the exception, augmented reality is sure to find a place in the classroom -- whether it be a brick-and-mortar institution or a digital classroom that seamlessly blends the physical world with the virtual one.


Minggu, 17 November 2013

molecular weight experiment

GRAM MOLECULAR WEIGHT OF CARBON DIOXIDE

WILS BEHGSTHOM, M.S.
and
MCIRLYS HOWELLS, Ph.D.

Carbon dioxide occurs as a variable component in the atmosphere. It is formed by the decay, fermentation, and combustion of organic matter. In this experiment, carbon dioxide will be produced by reacting marble chips, predominantly CaC03, with hydrochloric acid. To obtain dry carbon dioxide, the gas is bubbled through a concentrated sulfuric acid which acts as a dessicant and collected in an Erlenmeyer flask.
The procedure involved in the determination of the molecular weight of carbon dioxide is called the gas density or vapor density method. In some texts it will be referred to as the Dumas method named for the Frenchman who is given credit for originating the method. It is based on the principle that equal volumes of gases contain the same number of molecules at the same temperature and pressure. This principle represents Avogardo’s Law which has been used to define a standard molar volume of any gas, 2 2 . 4 liters, at 1 atmosphere pressure (760 torr) and 273 K ( O oC ) . The ideal gas law, PV = nRT when solved for volume at STP defines this standard volume. If n, number of moles, in the ideal gas law is redefined as mass of gas/gram molecular weight (GMW) the formula can be rearranged to solve for the gram molecular weight by using measured values obtain in the laboratory for any PV gas sample. The variables in the formula are mass (grams), R - gas law constant (0.0821 liter-atm/mole-K), T - temperature (degrees Kelvin), P - pressure (atmospheres), and V - volume
(liters). Alternatively, the volume of gas measured at laboratory conditions could be corrected to the volume which it would occupy at STP. A simple proportion relationship would then be used to
mass of collected aaS = GMW volume occupy at STP 22.4 liters solve for the GMW.

Procedure
Take two clean, dry, marked Erlenmeyer flasks and obtain mark the bottom position of the stopper with a piece of tape. Weigh the flasks to the nearest 1 mg and record the weight. Record the laboratory temperature and pressure. Using CRC Handbookof Chemistry and Physics, record the density of air at laboratory conditions.
~ rubber stoppers that fit each tightly. Stopper the flasks and
In the fume hood, set up the apparatus as shown in the
following diagram. This will require that a number of right angle
glass bends must be produced by you. The student should read
glass cutting (830 - 8321, glass polishing (835 -836) and glass
bending (840 - 841) in the Chemical Technician's Ready Reference
Handbook, CTRRH. Remember to lubricate glass with glycerin
before inserting it into the tubing or stoppers. Place 40 g of
marble chips in a generating flask and place approximately 30 ml
of concentrated sulfuric acid, H2SO4 , in the bubbler bottle.
Be sure to check all of the rubber and glass tubing for
constrictions or blockage as the apparatus is assembled. Use a
a paper punch and 3 by 5 index card to make the paper cover for
the collection flask. Making sure that the screw clamp is closed
between the funnel and generator, add approximately 50 ml of
6M HC1 to the funnel. The liquid level in the funnel should never
exceed three-fourths of its total volume capacity nor should it be
allowed to drain completely since air would enter the generator.
Record in your laboratory notebook the handling precautions, and
the spillage and disposal procedures for all chemicals used in
the experiment from MSDS notebook.
Opening the screw clamp slightly, allow the HC1 solution to
pass from the funnel onto the marble chips. A moderate rate of gas
generation should be maintained and can be monitored by watching
the bubbler bottle. The generator should be carefully shaken
occasionally to avoid the'use of an unnecessary excess of HC1.
Permit the gas to flow for 5 minutes to ensure the displacement of
air in the apparatus. Touch the bottom of the generator flask and
record the temperature effect. Remove the paper cover and delivery
. tube from the collection flask and quickly insert a rubber stopper
to the marked position. Insert the delivery tube into a second flask
to collect a sample while weighing the first flask to the nearest
0.001 g. Alternate sample collection in this fashion until a
constant weight (50.005 g) is obtained for both flasks. When
all mass measurements have been completed, fill each of the
flasks with water to the marked position and measure the volume of
water using a graduated cylinder. To disassemble, first loosen
stopper on the generator flask to avoid siphoning concentrated
sulfuric acid into the generator. Drain the HC1 from the funnel
into a beaker and use proper disposal procedures for excess acid in
the beaker, generator and bubbler bottle. Remember that
concentrated solutions are always poured into more diluted solutions.
To determine the weight of carbon dioxide it is necessary to
calculate the weight of air in the flasks at the initial weighing.
The density of air at laboratory conditions is multiplied times
the volume of the flask to obtain mass of air. The mass of air is
then subtracted from the initial flask weight to obtain weight of
the stopper and flask. This is used to determine the mass of carbon
dioxide collected. Using one of the two methods outlined in the
introduction, calculate the gram molecular weight of carbon dioxide
for each trial and the average value. Calculate the relative error
for your results.
Exchange two clean, dry 250 ml flasks at the stockroom for
two filled with samples of unknown gases. Do not disturb the
'stopper or warm the flask unnecessarily by handling. Mark the
position of the stopper and weigh to nearest 0.001 g. In the hood
remove the stopper and displace the unknown gas with laboratory
air by use of the aspirator. Replace the stopper and weigh the
flask of air accurately. Fill the flask with water to the mark
and measure the volume using a graduated cylinder. Repeat the
calculations that were necessary to determine the gram molecular
weight of carbon dioxide.

Termodinamika : kerja reversibel dan irreversibel

Kerja Reversibel dan irreversibel
Pertimbangkan sistem yang sama seperti sebelumnya: sejumlah gas berada di dalam silinder dengan suhu konstan T. Kita mengekspansi gas dari keadaan T, P1, V1 menjadi keadaan T, V2, P2, dan kemudian kita kompresi gas tersebut ke keadaan semula. Gas ini telah mengalami perubahan siklik kembali dari keadaan akhir ke keadaan awal. Misalkan kita melakukan siklus ini oleh dua proses yang berbeda dan menghitung pengaruh kerja Wcy untuk setiap proses.
Proses I. Ekspansi satu tahap dengan Pop = p2; kemudian kompresi satu tahap Pop = p1. Kerja yang dihasilkan dari ekspansi dengan pers. (4.4)
                                                                              Wexp = P2(V2 - V1)
Ketika kerja yang dihasilkan oleh kompresi sebesar
                                                                              Wcomb = P1(V1 - V2)
Rangkaian pengaruh kerja pada siklus adalah penjumlahan dari kedua persamaan di atas
                                     Wcy = P2(V2 - V1) + P1(V1 - V2) = (P2 - P1) - (V2 - V2)
Sejak V2 – V1 adalah positif, dan P2 – P1 adalah negatif, Wcy adalah negatif. Rangkaian kerja telah hilang dalam siklus ini. Sistem telah dikembalikan ke keadaan awal, tetapi lingkungannya belum; massa akan
lebih rendah di lingkungan setelah siklus ini.
Proses II. Pembatasan ekspansi multi tahap dengan Pop = p; kemudian pembatasan kompresi multi tahap dengan Pop = p.
Dengan pers. (4.5), kerja yang dihasilkan dalam ekspansi adalah

(Perubahan tanda dalam integral kedua dipengaruhi oleh pertukaran batas integral).
Jika perubahan dilakukan dengan metode kedua, sistem dikembalikan ke
keadaan awal, dan lingkungan juga dikembalikan ke kondisi awalnya, karena tidak ada pengaruh rangkaian kerja yang dihasilkan.
Misalkan suatu sistem mengalami perubahan keadaan melalui urutan tertentu dari keadaan intermediate dan kemudian dikembalikan ke keadaan semula dengan urutan yang sama melintasi keadaan dalam urutan terbalik. Kemudian jika lingkungan juga dikembalikan ke keadaan aslinya, perubahan ke arah sebaliknya adalah reversibel. Proses berhubungan adalah proses reversibel. Jika lingkungan tidak dikembalikan ke keadaan semula setelah siklus, perubahan dan proses adalah irreversibel.
 Jelaslah bahwa proses kedua yang baru saja dijelaskan adalah proses yang reversibel, sedangkan proses yang pertama adalah irreversibel. Terdapat karakteristik penting lain dari proses reversibel dan ireversibel. Dalam proses ireversibel yang baru saja dijelaskan, satu massa ditempatkan pada piston, penahan dilepaskan, dan piston di gerakkan ke atas dan berada di posisi akhir. Pada posisi tersebut, terjadi keseimbangan internal gas, arus konveksi ditetapkan, dan suhu berubah-ubah. Sebuah rentang waktu tertentu dibutuhkan gas untuk setimbang di bawah kondisi baru. Situasi yang sama berlaku pada kompresi irreversible. Sifat ini kontras dengan ekspansi reversibel yang pada setiap tahap tekanan berlawanan hanya berbeda sangat kecil dari tekanan kesetimbangan dalam sistem, dan volume meningkat sangat kecil. Dalam proses reversibel yang keseimbangan internal gas berubah sangat kecil dan di dalam batas tidak berubah sama sekali.
Oleh karena itu, pada setiap tahap dalam perubahan reversibel, sistem tidak berawal dari kesetimbangan oleh jumlah lebih dari jumlah yang sangat kecil.
Jelaslah, kita tidak bisa benar-benar melakukan perubahan reversibel. Suatu rentang waktu tak terbatas akan diperlukan jika peningkatan volume pada setiap tahap benar-benar sangat kecil. Proses reversibel bagaimanapun juga bukanlah proses nyata, tetapi proses ideal. Proses nyata selalu ireversibel. Dengan kesabaran dan keterampilan, reversibilitas dapat didekati, tetapi tidak dapat dicapai. proses reversibel sangat penting karena pengaruh kerja terkait dengan proses tersebut yang menggambarkan nilai maksimum atau minimum. Jadi limit ditetapkan pada kemampuan perubahan tertentu untuk menghasilkan kerja, dalam kenyataannya kita akan mendapatkan lebih sedikit, dan kita tidak boleh berharap untuk mendapatkan lebih banyak kerja yang dihasilklan.
Pada siklus isoterm yang dijelaskan di atas, kerja yang dihasilkan pada siklus irreversible bernilai negatif, yaitu kerja yang telah hilang. Ini merupakan karakteristik mendasar setiap perubahan ireversibel dan juga setiap perubahan siklus isotermal yang nyata. Jika sistem dikondisikan pada suhu konstan dan mengalami perubahan siklik oleh proses ireversibel (proses nyata), sejumlah kerja dihilangkan di lingkungannya. Hal ini sebenarnya pernyataan hukum kedua termodinamika. Pengaruh kerja terbesar akan dihasilkan dalam siklus isotermal reversibel, dan ini, sebagaimana telah kita lihat, Wcy=0. Oleh karena itu kita tidak dapat berharap untuk mendapatkan jumlah positif kerja di lingkungan
dari perubahan siklus sistem yang dikondisikan pada suhu konstan.
Pemeriksaan argumen yang disajikan di atas menunjukkan bahwa kesimpulan umum yang dicapai tidak bergantung pada fakta bahwa sistem dipilih untuk ilustrasi yang terdiri dari gas, kesimpulan adalah valid terlepas dari bagaimana sistem dibentuk. Oleh karena itu untuk menghitung kerja ekspansi yang dihasilkan dalam perubahan dari sistem apapun kita menggunakan pers. (4.4), dan untuk menghitung kerja yang dihasilkan dalam perubahan reversibel, kita menetapkan Pop = p dan menggunakan pers. (4.5).

Dengan modifikasi sesuai argumen, kesimpulan umum yang bisa dicapai ditampilkan dengan benar untuk setiap jenis kerja: kerja listrik, kerja yang dilakukan terhadap medan magnet, dan sebagainya. Untuk menghitung jumlah dari jenis lain dari kerja kita tidak akan menggunakan integral dari tekanan terhadap volume, melainkan integral dari gaya yang timbul dalam perpindahan.

Jumat, 11 Oktober 2013

REACTION RATE EXPERIMENT

A.     Experiment purposes
Observing the factors that affect reaction rate
B.     Overview
Find out the references about the factors that affect reaction rates from chemistry for college textbook and another references, i.e. handbook, website !. References should be taken from two textbook of chemistry for college.
C.     Materials and apparatus
Apparatus
Quantity
Apparatus
Quantity
Test tube
6
Thermometer
1
Stopwatch
1
Analitical balance
1
Sandpaper
1
Dropper pipette
5
Beaker glass 100 mL
6
Aquades bottle
1
Print paper
1
Volumetric pipette
1
Alcohol burner
1
Bulb pipette
1
Wire gauze
1
Measurement cylinder
1
Tripod
1
Watch glass
1

Materials
Quantity
Materials
Quantity
Magnesium ribbon
4 pieces ( ± 2 cm )
Sodium Chloride 0,1 M
proximate
HCl 0,5M; 1 M; 2 M dan 3 M
@ 3 mL
Ferri(III) Chloride 0,1 M
proximate
Hydro Chloride acid 0,1 M
25 mL
Marble lump
4 grams
Na2S2O3 0,1 M
25 mL
Marble powder
4 grams
Hydrogen peroxide
@ 25 mL



D.     Procedures  :
1.      Observing the effect of concentration on reaction rate
·         Prepare 4 test tube and fill it with magnesium ribbon that has been cleaned Give the number 1 - 4
·         Fill the test tube 1 with 0.5 M HCl solution of 3 mL
·         Record the time course of reaction with a stopwatch, starting when HCl solution forth until the Mg tape run out of reaction
·         Repeat these steps for the solution of HCl 1M, 2 M and 3 M in the 3rd test tube the other
2.      Observing the effect of temperature on reaction rate
·         Place the 100 mL beaker on a white paper marked X
·         Fill the beaker with 25 mL Na2S2O3 0.1 M solution and measure its temperature with a thermometer
·         Pour the 25 mL of 0.1 M HCl solution into a beaker which already contain    0.1 M Na2S2O3 solution
·         Record the time course of reaction with a stopwatch, starting when HCl solution forth until an X is not visible anymore
·         Repeat these steps, with a solution of 0.1 M Na2S2O3 which is heated until the temperature is 40 oC, 50 oC and 60 oC
3.  Observing the influence of surface area on reaction rate
·         weigh chunks of marble weighing 4 grams
·         Fill the beaker with 25 mL of HCl 2 M
·         Enter the 4 gram lump of marble into a beaker containing a solution of HCl have them
·         Record the time course of reaction with a stopwatch, starting when the marble slab marble inserted until exhausted to react
·         Repeat these steps for 4 grams of powdered marble


4.  Observing the influence of catalyst on reaction rate
·         Fill 3 cups with H2O2 solution @ 25 mL. Give the number 1-3.
·         Add 20 drops of 0.1 M NaCl solution into beaker number 2
·         Add 20 drops of 0.1 M FeCl3 solution into beaker number 3
·         Observe the state of the beaker 1-3 at the same time